Atmospheric record in the Hadean Eon from multiple sulfur isotope measurements in Nuvvuagittuq Greenstone Belt (Nunavik, Quebec).
نویسندگان
چکیده
Mass-independent fractionation of sulfur isotopes (S-MIF) results from photochemical reactions involving short-wavelength UV light. The presence of these anomalies in Archean sediments [(4-2.5 billion years ago, (Ga)] implies that the early atmosphere was free of the appropriate UV absorbers, of which ozone is the most important in the modern atmosphere. Consequently, S-MIF is considered some of the strongest evidence for the lack of free atmospheric oxygen before 2.4 Ga. Although temporal variations in the S-MIF record are thought to depend on changes in the abundances of gas and aerosol species, our limited understanding of photochemical mechanisms complicates interpretation of the S-MIF record in terms of atmospheric composition. Multiple sulfur isotope compositions (δ(33)S, δ(34)S, and δ(36)S) of the >3.8 billion-year-old Nuvvuagittuq Greenstone Belt (Ungava peninsula) have been investigated to track the early origins of S-MIF. Anomalous S-isotope compositions (Δ(33)S up to +2.2‰) confirm a sedimentary origin of sulfide-bearing banded iron and silica-rich formations. Sharp isotopic transitions across sedimentary/igneous lithological boundaries indicate that primary surficial S-isotope compositions have been preserved despite a complicated metamorphic history. Furthermore, Nuvvuagittuq metasediments recorded coupled variations in (33)S/(32)S, (34)S/(32)S, and (36)S/(32)S that are statistically indistinguishable from those identified several times later in the Archean. The recurrence of the same S-isotope pattern at both ends of the Archean Eon is unexpected, given the complex atmospheric, geological, and biological pathways involved in producing and preserving this fractionation. It implies that, within 0.8 billion years of Earth's formation, a common mechanism for S-MIF production was established in the atmosphere.
منابع مشابه
Mass-independent fractionation of sulfur isotopes in sulfides from the pre-3770 Ma Isua Supracrustal Belt, West Greenland
Redox chemistry of the coupled atmosphere–hydrosphere system has coevolved with the biosphere, from global anoxia in the Archean to an oxygenated Proterozoic surface environment. However, to trace these changes to the very beginning of the rock record presents special challenges. All known Eoarchean ( c . 3850–3600 Ma) volcanosedimentary successions (i.e. supracrustal rocks) are restricted to h...
متن کاملA Hydrothermal-Sedimentary Context for the Origin of Life
Critical to the origin of life are the ingredients of life, of course, but also the physical and chemical conditions in which prebiotic chemical reactions can take place. These factors place constraints on the types of Hadean environment in which life could have emerged. Many locations, ranging from hydrothermal vents and pumice rafts, through volcanic-hosted splash pools to continental springs...
متن کاملProcesses on the Young Earth and the Habitats of Early Life
Conditions at the surface of the young (Hadean and early Archean) Earth were suitable for the emergence and evolution of life. After an initial hot period, surface temperatures in the late Hadean may have been clement beneath an atmosphere containing greenhouse gases over an ocean-dominated planetary surface. The first crust was mafic and it internally melted repeatedly to produce the felsic ro...
متن کاملGenesis of the Kishan Pb-Zn mineralization, western Iran based on mineralogy, fluid inclusion and sulfur isotope evidences
Kishan lead-zinc deposit is one of the Malayer-Esfahan metallogenic belt deposits, located NW Arak, Markazi Province. The fluid inclusion microthermometry of the primary liquid-vapor bearing fluid inclusions trapped in the cogenetic quartz veins exhibited a homogenization temperature ranges from 140 and 272 °C (average 208.47 °C from 68 fluid inclusions), corresponding with the salinity of 10 t...
متن کاملMultiple Sulfur Isotope Fractionations in Biological Systems: a Case Study with Sulfate Reducers and Sulfur Disproportionators
Multiple sulfur isotope measurements of sulfur compounds associated with dissimilatory sulfate reduction, elemental sulfur disproportionation and sulfite disproportionation indicate that different types of metabolic processes impart different multiple isotope signatures. An established network for sulfate reduction was used previously to explain the multiple isotope variability. Here, we revisi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 3 شماره
صفحات -
تاریخ انتشار 2015